

advances.sciencemag.org/cgi/content/full/6/38/eabc5529/DC1

Supplementary Materials for

Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks

Liliang Ouyang, James P. K. Armstrong, Yiyang Lin, Jonathan P. Wojciechowski, Charlotte Lee-Reeves, Daniel Hachim, Kun Zhou, Jason A. Burdick, Molly M. Stevens*

*Corresponding author. Email: m.stevens@imperial.ac.uk

Published 18 September 2020, *Sci. Adv.* **6**, eabc5529 (2020) DOI: 10.1126/sciadv.abc5529

This PDF file includes:

Figs. S1 to S10 Table S1

Figure S1. Printability characterization. (**A**) Oscillatory strain sweeps (frequency of 1.5 Hz, temperature of 25 °C) showing typical shear-thinning behavior of (i) 2.5 wt% HAMA⁺, while (ii) HAMA without gelatin was in a liquid phase across the tested strain range. (**B**) (i) Experimental setup of self-supporting bioink filament formation. Representative optical images for (ii) 2.5 wt% HAMA and (iii) 2.5 wt% HAMA⁺ bioinks (arrow indicates filament formation). HAMA failed to bridge the smallest gap (0.5 mm), while HAMA⁺ filaments could be used to bridge gaps of up to 4 mm. Printing parameters can be found in Table S1 corresponding to individual bioink. Scale bars: 5 mm. Credit for all photographs in this figure: Liliang Ouyang, Imperial College London.

Fig. S2. Stability of printed constructs. (A–B) Images of printed tubes and (C–D) corresponding diameter changes 1 d (A, C) and 7 d (B, D) after printing and during incubation at 37 $^{\circ}$ C (normalized to the values at 0 d). Scale bars: 5 mm. Credit for all photographs in this figure: Liliang Ouyang, Imperial College London.

Fig. S3. Structural heterogeneity. (A) Photographs of printed heterogeneous constructs (tubular and tracheal-esophageal model) after (1 d, 7 d, 21 d) incubation at 37 °C. 2.5 wt%

HAMA⁺ (clear phase) and 5 wt% GelMA⁺ (green phase) were printed alternately along the longitudinal or transverse direction. **(B)** Microscopy image of the heterogeneous tube and fluorescence intensity profile along the indicated white line. **(C)** Microscopy images of a tracheal-esophageal construct, indicating the interface between two phases (arrow). Scale bars: 5 mm (A), 1 mm (B–C). Credit for all photographs in this figure: Liliang Ouyang, Imperial College London.

Fig. S4. Release of gelatin. (A) Representative images of a 3D printed tubular structure (2.5 wt% HAMA⁺) over time during incubation at 37 °C. The green fluorescence indicates the embedded Fluorescein-gelatin. (B) Accumulated release of gelatin from 2.5 wt% HAMA⁺ hydrogels during incubation at 37 °C or room temperature (RT). Gelatin release profiles in various complementary network hydrogels incubated at (C) 37 °C and (D) room temperature. (E) The influence of photo-crosslinkable polymer concentration (HAMA⁺, HANB⁺, GelMA⁺) on gelatin release. Scale bar: 5 mm. Credit for all photographs in this figure: Liliang Ouyang, Imperial College London.

Fig. S5. Influence of gelatin on mechanical properties and microstructure. (A) The compressive modulus of HANB, GelMA, and GelAGE hydrogels with or without supplementary 5 wt% gelatin. 0 d and 1 d indicate the conditions before and after 24 h incubation at 37 °C, respectively. Two-tailed Mann–Whitney test, *p < 0.05, n.s. = not significant ($n \ge 3$). (B) Representative scanning electron micrographs of various hydrogels with or without supplementary 5 wt% gelatin. Hydrogels were analyzed after 24 h incubation followed by freeze-drying. Scale bars: 100 µm.

Fig. S6. Concentration screening for hydrogel formation. Images of cast cylinder hydrogels (diameter 3.5 mm, height 2 mm) for **(A)** HAMA, **(B)** CSMA and PEGA with varied polymer concentrations. All samples were treated with light (365 nm, 10 mW cm⁻²) for 5 min before demolding. Cylindrical 0.5 wt% HAMA hydrogels were stained with dye (magenta) to visualize their geometry in air and PBS. Scale bars: 5 mm. Credit for all photographs in this figure: Liliang Ouyang, Imperial College London.

Fig. S7. Uniformity of cell distribution. Confocal microscopy z-stack images (green for calcein-AM, red for ethidium homodimer-1) of astrocytes encapsulated in bioprinted constructs at different depths within the hydrogel. Scale bars: 100 µm.

Fig. S8. Comparison of tissue formation. **(A)** DNA quantity at 0 h and **(B)** fold change in DNA quantity (normalized to 0 h) of Saos-2 laden hydrogels determined by a PicoGreenTM assay. Two-tailed Mann–Whitney test, *p < 0.05, n.s. = not significant (n \ge 3). **(C)** Safranin O staining of cartilage-like construct engineered using chondrocytes encapsulated (2.5 ×

 10^7 mL⁻¹) in hydrogels with or without supplementary 5 wt% gelatin after culturing for 42 d. (**D**) The fraction of sulfated glycosaminoglycan (normalized to total dry tissue mass) in cartilage engineered from chondrocyte-laden hydrogels. Tissue constructs were harvested at 42 d and digested, before measuring sulfated glycosaminoglycan content using a DMMB assay. Paired Wilcoxon test, *p < 0.05 (donor number = 3). (**E**) Alizarin Red S staining and (**F**) normalized ALP activity of bone-like construct engineered using Saos-2 cells encapsulated in the same set of hydrogels (initial cell density of 7.5 × 10⁶ mL⁻¹). Analysis was performed after culturing the cellularized hydrogels for 14 d. Two-tailed Mann–Whitney test, *p < 0.05. (**G**) Bioprinting of a centimeter-sized bone-shaped construct using 5 wt% GelMA⁺ bioink encapsulated with Saos-2 cells. Numbers (1-4) on the images indicate the printing process. Scale bars: 500 µm (C, E), 5 mm (G). Credit for all photographs in this figure: Liliang Ouyang, Imperial College London.

Fig. S9. Determination of degree of functionalization. ¹H-NMR spectrum for (A) HAMA, (B) HANB, (D) PEGA, (E) CSMA, (F) DexMA, (G) AlgMA, (H) HepMA and (C) FluoraldehydeTM assay data of GelMA.

Fig. S10. Solvent optimization for PEG-based bioinks. The optical density of **(A)** PEGDA, **(B)** PEGA, and **(C)** PEGNB containing different concentrations of acetic acid (from 0 to 0.5 vol%) and PEG (from 2.5 to 10 wt%). The control (con) indicates a condition free of gelatin and acetic acid. All other conditions are presented with 5 wt% gelatin.

Bioink Name	Bioink Composition				Printing Parameters			
	[Base Polymer] (wt%)	[Gelatin] (wt%)	[LAP] (mM)	[DTT] (mM)	Nozzle Temp. (°C)	Platform Temp. (°C)	Pneumatic Pressure (bar)	Printing Speed (mm s ⁻¹)
2.5 wt% HAMA	2.5	-	2	-	25-26	15	0.1-0.2	2-3
2.5 wt% HAMA+	2.5	5	2	-	25-26	15	0.8-1.1	2-3
0.5 wt% HAMA+	0.5	5	2	-	24-25	15	0.4-0.6	2
1 wt% HAMA+	1.0	5	2	-	~25	15	0.7-0.9	2
5 wt% HAMA+	5.0	5	2	-	25-26	15	0.7-0.9	2
10 wt% HAMA+	10.0	5	2	-	26-27	15	1.6-1.9	2
2.5 wt% GelMA+	2.5	5	2	-	24-25	15	0.5-0.6	1.5-2
5 wt% GelMA+	5.0	5	2	-	26-27	15	0.5-0.7	1.5-2.5
5 wt% GelAGE+	5.0	5	2	3	26-27	15	0.6-0.8	2
2.5 wt% HANB+	2.5	5	2	2.31	23-24	15	0.6-0.7	1.5-2.5
5 wt% PEGDA+	5.0	5	2	-	26-27	15	0.8-1.0	2-3
1.5 wt% PEGA+	1.5	5	2	-	25-26	15	0.5-0.7	2-3

Table S1. Bioink composition and examples of printing parameters.

2.5 wt% PEGA+	2.5	5	2	-	25-26	15	0.6-0.8	2-3
5 wt% PEGA+	5.0	5	2	-	26-27	15	0.7-0.8	2-3
5 wt% PEGNB+	5.0	5	2	4	24-25	15	0.8-0.9	2-3
5 wt% DexMA+	5.0	5	2	-	24-25	15	0.6-0.7	2-3
1.5 wt% CSMA+	1.5	5	2	-	~25	15	0.4-0.6	2
2.5 wt% CSMA+	2.5	5	2	-	24-25	15	0.7-0.8	2-3
1 wt% AlgMA+	1.0	5	2	-	25-26	15	0.7-0.8	2
1 wt% ChiMA+	1.0	5	2	-	25-26	15	0.6-0.9	2
10 wt% HepMA+	10.0	5	2	-	24-25	15	0.8-0.9	2