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Abstract
Hydrogels, three-dimensional (3D) networks of hydrophilic polymers formed in water, are a
significant type of soft matter used in fundamental and applied sciences. Hydrogels are of
particular interest for biomedical applications, owing to their soft elasticity and good
biocompatibility. However, the high water content and soft nature of hydrogels often make it
difficult to process them into desirable solid forms. The development of 3D printing (3DP)
technologies has provided opportunities for the manufacturing of hydrogels, by adopting a
freeform fabrication method. Owing to its high printing speed and resolution, vat
photopolymerization 3DP has recently attracted considerable interest for hydrogel fabrication,
with digital light processing (DLP) becoming a widespread representative technique. Whilst
acknowledging that other types of vat photopolymerization 3DP have also been applied for this
purpose, we here only focus on DLP and its derivatives. In this review, we first comprehensively
outline the most recent advances in both materials and fabrication, including the adaptation of
novel hydrogel systems and advances in processing (e.g. volumetric printing and multimaterial
integration). Secondly, we summarize the applications of hydrogel DLP, including regenerative
medicine, functional microdevices, and soft robotics. To the best of our knowledge, this is the first
time that either of these specific review focuses has been adopted in the literature. More
importantly, we discuss the major challenges associated with hydrogel DLP and provide our
perspectives on future trends. To summarize, this review aims to aid and inspire other researchers
investigatng DLP, photocurable hydrogels, and the research fields related to them.

1. Introduction

Three-dimensional (3D) printing technologies facili-
ate the customization of individual complex struc-
tures; hence, they have been widely used in many
fields, including industrial manufacturing, medicine,
prototype development, architecture, and cultural
relic restoration [1]. Due to the advantages of high
precision and high speed (compared with other
3D printing technologies), vat photopolymerization-
based 3D printing (VPP) has received extensive atten-
tion in recent years. VPP is defined as the computer-
controlled process of photopolymerization from a
vat of liquid material under controlled light irra-
diation, to produce a solid object for 3D print-
ing. Photopolymerization-based 3D printing (i.e.

lithography or light-projection approaches) has seen
considerable progress in the past few years and con-
tinues to grow.

VPP can be divided into dot and planar print-
ing methods, depending on the different exposure
methods. Dot printing methods, including stereo-
lithography (SLA) and multiphoton polymerization
(MPP), cure the resins point by point. SLA uses a
laser beam scanned in the XY plane to photopoly-
merize a specific pattern; its accuracy depends on the
spot diameter. The resolution of SLA can reach 10µm
[2], and it is widely used to construct complex struc-
tures with a high resolution for tissue engineering
[3]. SLA has been used to fabricate ear-shaped hybrid
scaffolds [4] and extracellular matrices to recreate
programmedmicromechanical environments in vitro

© 2022 IOP Publishing Ltd
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Figure 1. Vat photopolymerization-based 3D printing technologies. (A) Illustration of the printing process of DLP (including
CLIP). (B) Illustration of the printing process of volumetric printing.

for 3D cell tissue culture [5]. Similar to one photon
absorption in one point (i.e. SLA), MPP applies
femtosecond laser pulses that scan and initiate pho-
topolymerization in an small volume, using a two-
photon absorption. Printing resolution of MPP can
reach∼40 nm [6], soMPP has been used tomanufac-
ture low-roughness, high-precision structural devices
[7] for applications like tissue engineering and drug
delivery [8]. For example, MPP has been applied
to print poly(ethylene glycol) (PEG) dimethacrylate
devices for controlled drug delivery [8] and to print
hybrid biopolymer-based hydrogel 3D grid-like scaf-
folds to evaluate the cellular viability and biocompat-
ibility of the material [9]. But its further application
is limited because only very small (<10 mm) objects
can be printed.

Planar printing methods cure a two-dimensional
plane simultaneously using both digital light pro-
cessing (DLP) and its improved versions. DLP
employs a digital micromirror device (DMD) to
reflect light from a light source, to simultaneously
project a 2D image mask into the vat and cure a layer.
The lift module moves the printed layer away from
its position, and the liquid is quickly replenished to
print the next layer; this facilitates the stacking of
3D objects (as shown in figure 1(A)). DLP printing
can achieve a printing resolution of 10–100 µm, and
the printing speed is greatly improved compared to
SLA. Hence, it was widely usedto quickly prepareen-
gineered biological scaffolds, conductive structures,
and biosensors [10]. However, the printing speed
of this layer-by-layer printing method is limited by
layer adhesion and Oxygen inhibition. The printing
speed, resolution (usually referring to the XY plane)
and their respective advantages and disadvantages of
SLA,MPP and DLP and its derived technologies are
shown in table 1.

To improve the printing speed of DLP, a new
method known as continuous liquid interface
production (CLIP) was developed [11]. The CLIP

method is a more efficient and faster version of
DLP; it employs an oxygen-permeable window (a
dead zone) [12] (figure 1(A)) at the bottom of the
vat for oxygen suppression, to realize continuous
rapid printing. The printing speed of CLIP can reach
hundreds of millimeters per hour, up to 100 times
faster than DLP and SLA [13, 14]. Similar to CLIP,
another type of hydrogel-based DLP printer projects
lights directly onto a thin layer of fluid-supported
precursor; this acts as a floating projection screen
to prevent the adhesion problem in DLP print-
ing and realize fast and continuous printing [15].
Another problem with DLP is that the mechanical
properties in the layers’ stacking direction (z dir-
ection) are not consistent with the projected plane
directions (x and y directions); we refer to this as
the anisotropy problem. To solve this, researchers
have proposed a new DLP technology referred to
as volumetric printing (VP). VP uses multiple DLP
projectors to project masks from multiple angles to
the center, and the vat in the center is photopoly-
merized in rotation to realize the direct one-shot
shaping of 3D objects [16, 17] (figure 1(B), detailed
in section 2.2). Although referred to as ‘volumetric,’
it still uses planar DLP projection; hence, it is still
regarded as a higher-level version of planar print-
ing. VP can rapidly print cylindrical hollow struc-
tures without producing anisotropy in the mech-
anical properties; thus, it has considerable future
potential.

Recently, 3D bioprinting has become one of the
fastest growing areas in 3D Printing.Materials repres-
ent a key problem in bioprinting; to overcome these
issues, researchers have turned to hydrogels. Hydro-
gels are usually soft and porous, and some hydro-
gels are highly temperature-sensitive, controllable,
and biocompatible. Hydrogels can also be designed by
mixing them with other materials to produce a range
of good composite properties (e.g. conductivity,mag-
netic responsiveness, and memory performance) and
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Table 1.Main vat photopolymerization-based 3D printing technologies based on hydrogels.

Technique Advantages Disadvantages
Printing speed
(mm3 h−1)

Resolution
(µm) References

SLA • High resolution • Slow construction for
larger objects

1–105 5–50 [18–21]

MPP • Higher resolution
• Suitable for complex
overhanging construct

• High costs
• Slow speed
• Hard to prepare
large-scale objects

• Not ideal for cell printing

10–104 0.5–1 [6, 7, 22–25]

DLP • High throughput
• Suitable for geometrically
complex structures

• Hard to produce
large-area objects

• Hard to prepare
high-resolution objects
with opaque biomaterials

103–105

104–106

(CLIP)

5–100 [11, 12, 14, 19]

Figure 2. The growth trend of VPP related literature and comparison of resolution and print speed of VPP. (A) The number of
literature related to hydrogel-based vat photopolymerization-based 3D printing searched in web of science (http://apps.
webofknowledge.com, use ‘vat photopolymer∗ (topic) AND hydrogels(topic)’ as keywords). The polyline indicates the
proportion of hydrogel-based DLP subject literature in the vat photopolymerization subject literature, as of 1 January 2022. (B)
Comparison of resolution and print speed of VPP. The area shown in the circle is the range of resolution and printing speed that
we believe is suitable for 3D bioprinting.

support the encapsulation of cells [26]. Owing to
their outstanding advantages, hydrogels have become
key materials in 3D bioprinting, including bioink-
based inkjet or extrusion printing methods. Com-
pared with inkjet or extrusion printing methods,
DLP systems do not require fine-grained control of
the physical and chemical properties (e.g. viscos-
ity) of the ink and in many cases do not require
any supporting materials, especially when printing
with hydrogels; this can greatly improve the print-
ing speed and reduce material costs. Thus, photo-
curable hydrogels have received considerable atten-
tion and have gradually become widespread in VPP,
especially in DLP 3D printing. However, hydro-
gels also suffer from problems (e.g. poor printab-
ility and poor mechanical properties) attributable
to their softness. In recent years, numerous studies

have attempted to solve the aforementioned prob-
lems through the development of new materials and
processes, to broaden the application fields of DLP
(especially in biomedical and related fields). DLP
has become one of the most popular technologies
in the related research, and researchers have com-
bined DLP 3D printing with life science, medicine,
microfluidics, flexible materials, and hydrogel-based
smartmaterials to preciselymanufacture devices with
specific properties. Hydrogel-based DLP printing is
becoming a research hotspot in regenerative medi-
cine, flexible devices, and other fields. Since 2010,
the number of studies related to Hydrogel-based
VPP has increased (especially since 2017), and this
field has become a hot topic in 3D printing. More
than 200 high-level articles were published in 2021
(figure 2(A)).
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Although several interesting reviews have sum-
marized the general progress in DLP 3D printing, few
reviews have considered the application of hydrogel-
based DLP. Considering the unique properties of
hydrogels, we believe it is useful to present a com-
prehensive review of them. More importantly, cur-
rent review articles either focus on materials or tech-
nologies, while our review highlights a wide range of
hydrogel-based applications. The aim of this review
is to introduce current studies and the main applic-
ations of the hydrogel-based DLP technique, to put
forward the main challenges it faces, and to identify
its application prospects. In 2020, several high-level
papers evaluated hydrogel-based DLP 3D printing in
the fields of materials, methods, and medical applic-
ations [26, 27]. A comprehensive and profound sum-
mary of the DLP technology will have considerable
practical value and is necessary and timely. This art-
icle will first focus on the problems of hydrogel-based
DLP printing, review the latest developments in the
hydrogels and printing processes designed to solve
these problems (section 2), and focus on the latest
applications of hydrogel-based DLP printing in the
fields of tissue engineering, regenerative medicine,
functional biological microdevices, and soft robots
and flexible devices (section 3). Then, we forecast the
future prospects and challenges faced by hydrogel-
based DLP printing, based on current developments
in life science, additive manufacturing, and smart
technologies (section 4).

2. Hydrogel-based DLP: advances in
materials and fabrication

2.1. Advances in materials used in DLP
A typical VPP system includes three main compon-
ents: prepolymers, photoinitiators, and light sources
[28]. Prepolymers impart the basic physical and
chemical properties of the printed parts. Materials
commonly used in DLP include hydrogels, resins,
ceramics, and other composite materials. The widely
adjustale physical and chemical properties of hydro-
gels have attracted considerable attention in the bio-
medical field. However, most soft hydrogels have
relatively poor mechanical properties; this severely
hampers the development in DLP 3D printing. The
present section first introduces the hydrogel systems
commonly used in DLP printing and introduces the
latest advances in hydrogels, including their improved
biocompatibilities, stronger mechanical characterist-
ics, and more diverse special properties.

Hence, the latest research into hydrogels has
focused on improving their mechanical properties
and printability (by ensuring good biocompatib-
ility and degradability) and solving the problem
of softness.

Currently, the commonly used hydrogels are
primarily divided into two categories (according
to the general mechanism and common functional

groups employed in polymerization) (figure 3):
acrylate hydrogels and thiol-ene hydrogels. In addi-
tion, hydrogels based on cationic polymerization have
recently attracted the attention of researchers, but
there are still few related cationic-based photopoly-
merizable materials.

Arcylate hydrogels usually have excellent biocom-
patibility and printability, though they tend to shrink
during layer-by-layer printing, causing the printed
part to curl and deform [29, 30]. In addition, the
material may exhibit non-uniform printability dur-
ing use, because oxygen in the liquid can react
with free radicals, hindering their propagation, some-
time even leading to the formation of heterogen-
eous networks. Acrylate hydrogels have been widely
used for the 3D printing of shape memory poly-
mers, highly stretchable soft elastomers, and certain
biofunctional materials. These specific applications
will be covered in the following sections. However,
several acrylate hydrogels exhibit stimuli or cyto-
toxicity in the uncured state, which limits their
application in the biomedical field (especially in tis-
sue engineering). The biodegradation of polymers
is another important factor limiting their applica-
tions. For good printability and mechanical proper-
ties, an increasing number of studies have focused
on synthesizing hydrogels with good biocompatib-
ility and biodegradation properties, by introducing
acrylate groups into the polymer. For example, the
currently synthesized Acrylate hydrogels with good
biocompatibility and biodegradability have primarily
included polycaprolactone diacrylate (PCLDA) [31],
poly(ethylene glycol) diacrylate (PEGDA) [3, 32–34],
polycarbonate [35], poly(phthalic acid glyceride)
acrylate (PGSA) [35, 36], and diacrylated Plur-
onic F127(DA-PF127) [37], To further improve cell
adhesion, methacrylated natural hydrogel materials
[including gelatin methacrylate (GelMA), hyaluronic
acid methacrylate and collagen methacrylate] have
been introduced in DLP printing. These hydrogels
all have good biocompatibility and biodegradability,
though they are also all affected by oxygen inhibi-
tion. The advantages and disadvantages are shown in
table 2.

Thiol-ene hydrogels produce lower shrinkage
stress during printing and usually exhibit good
biocompatibility. However, some thiol-ene hydro-
gels suffer from drawbacks such as poor stor-
age stability, strong odor, low stiffnessand poor
mechanical properties [38]. Widely used thiol-
ene hydrogels include thiol pentaerythritol tetra
(3-mercaptopropionate) (PETMP) [10, 39–41];
1,6-hexanediol diacrylate [39, 42, 43], triallyl-1,3,5-
triazine-2,4,6(1H,3H,5H)-trione (TTT); pentaeryth-
ritol tetrakis(3-mercaptopropionate) (PE-1); tris
(3-mercaptobutyloxyethyl)isocyanurate (NR1) and
1,4-butanediol bis(3-mercaptobutyrate) (BD1) [41];
trimethylolpropane tris(3-mercaptopropionate)
[44, 45]; tris[2-(3-mercaptopropionyloxy))isocyan

4
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Figure 3. Two types of reaction systems of hydrogels commonly used in DLP. (A), (C) General mechanism for the free-radical
chain polymerization and radical-mediated thiol–ene photocross-linking of bioinks and bioresins. (B), (D) Common functional
groups employed in free-radical chain polymerization and radical-mediated thiol–ene reactions [26]. Reproduced with
permission. Copyright 2020, ACS Publications.

Table 2.Main hydrogels used in DLP 3D printing.

Hydrogels Advantages Disadvantages Reference

PEGDA • Adjustable mechanical
properties

• Low degradation rate
• Poor cell adhesion
• Oxygen inhibition
• Heterogeneous networks

[3, 32–34]

PGSA • Adjustable mechanical
properties

• Good elasticity

• High degradation rate and
related cytotoxicity

• Heterogeneous networks
• Oxygen inhibition

[35, 36, 61]

PCLDA • Good shape memory
properties

• Oxygen inhibition
• Heterogeneous networks

[31]

DA- PF127 • Reverse thermal-gelation
• Ability to gel at low
concentrations

• Broad range of viscosities

• Poor long-term cell viability [37]

GelMA • Good cell adhesion • Low mechanical strength
• Oxygen inhibition
• Heterogeneous networks

[49–52]

HAMA • Good hydrophilicity • Oxygen inhibition
• Heterogeneous networks

[62]

Collagen methacrylate • Good cell adhesion • Oxygen inhibition
• Heterogeneous networks

[63]

Thiol-ene hydrogels
(PETMP,HDDA,TMPMP,
TMI,TMPTA3EO)

• No oxygen inhibition
• Homogeneous network
• Lower shrinkage stress
• High toughness

• Poor storage stability
• Strong odor
• Low stiffness

[10, 39–45, 52]

Cationic hydrogels
(DGEBA,CDVE)

• Higher reactivity
• Low shrinkage
• Good water resistance

• Lack of alternative materials [47, 48]

urate ethyl ester [41] and ethoxy trimethylolpro-
pane triacrylate [46]. The physical and mechanical
properties of thiol-ene networks can be adjusted by
varying the functionality and stiffness of secondary
thiols. Taking PTEMP, PE-1, NR1, BD1, and TTT

as examples, the shrinkage of the secondary thiol-
ene systems is 7.6% compared to the acrylate system
(Trimethylolpropane triacrylate), with a shrinkage of
13.9%. Objects with a resolution up to 50 µm have
been fabricated, exhibiting considerable potential for

5



Biomed. Mater. 17 (2022) 042002 X Mo et al

the printing of high-resolution 3D optics [41]. Com-
pared with acrylated hydrogels, these materials are
less affected by oxygen, resulting in less heterogen-
eous networks and more consistent mechanical and
physical properties.

Anothermaterial system that has recently received
attention is based on cations rather than free radic-
als. Such materials undergo photopolymerization via
a chain growth process and feature a large number
of crosslinking points along the polymer backbone.
Cation system-based hydrogels (e.g. diglycidyl ether
[47] and 1,4-cyclohexanedimethanol divinyl ether
[48]) offer better reaction performances, less shrink-
age, and good water resistance; however, the range of
alternative materials is currently limited, which may
indicate a new research direction for VPP.

Considering the extensive range of biomedical
applications, we mainly introduce the latest progress
in the research and application of acrylic hydrogels.
GelMA hydrogels are representative of this type of
acrylate hydrogel and are widely used in tissue engin-
eering scaffolds; they offer good biocompatibility and
adjustable porosity, and they are amenable to growth,
proliferation, and differentiation [49]. Khademhos-
seini et al demonstrated the suitability of GelMA
to support the formation of vascular networks, and
they demonstrated that 3D hydrogel constructs con-
tributed to the production of capillary-like networks
in vitro. They also produced an oxygen-generating
hydrogel consisting of calcium peroxide in GelMA
scaffolds; this released a large amount of oxygen over
a period of five days to alleviate the metabolic stress
of the heart side population cells, and it strongly
enhanced cell viability [50, 51]. Koffler et al reported
the use of GelMA and PEGDA to create a 3D bionic
hydrogel scaffold suitable for rodent spinal cords.
After loading neural progenitor cells, they could pro-
mote axon regeneration and repair spinal cord injur-
ies [52].

To further enhance the biocompatibility of hydro-
gels, decellularized extracellular matrix (dECM) has
been extracted, modified, and mixed with other
hydrogels when printing biological devices [53].
dECM has good biocompatibility and cell adhesion,
so it is often mixed with other hydrogels (such as
photopolymerizable hydrogels like PEGDA, GelMA,
etc) to prepare bioinks with good biological, physical,
mechanical and printablity. However, there are also
problems such as batch inhomogeneity in the extrac-
tion of dECM.Anewpersonalized airway scaffoldwas
developed using modified collagen I extracted from
fish scales; it is exhibited non-cytotoxicity and showed
good cell viability in a cultured human bronchial epi-
thelial cell line [54]. In another study, after covalent
conjugation with fibronectin, the surface of the mul-
tilayer scaffold showed efficient cell attachment prop-
erties [55]. Natural hydrogels (gelatin, alginate, and
hyaluronic acid) have shown tremendous advantages
in maintaining and promoting cellular functions.

Synthetic hydrogels (e.g. PEG) offer a variety of suit-
able and controllable properties. To gain better prop-
erties, researchers chose to modify natural or syn-
thetic materials(e.g. modify PEG to PEGDA). For
example, Park fabricated a bioink from silk fibroinfor
DLP in tissue engineering applications. The SF-based
bioink (Sil-MA) demonstrates its biocompatibility
and printability for different organs with complex
structures, including the heart, vessel, brain, trachea,
and ear [56].

A suitable cell-loaded biological device for
implantation should be structurally integrated and
sufficiently similar to human tissues, to adequately
support cell adhesion and growth. In recent years,
an increasing number of studies have focused upon
improving the mechanical properties of hydrogels
for tissue engineering. Since adjustalbe mechanical
properties can be obtained by adjusting the acrylic
acid content, PEG and its derivatives (i.e. PEGDA),
PGS and its derivatives (i.e. PGSA), and PCL and
its derivatives (i.e. PCLDA) have received extensive
attention. For example, mechanical properties can
be adjusted using various material formulations (e.g.
the concentration of prepolymers). Shaochen et al
designed and fabricated a 3D PEG scaffold to adjust
the elasticity modulus and microstructure; this scaf-
fold can be used to compare the 3D migration char-
acteristics of normal mammary epithelial cells and
twisted transformed cells [57].

Studies have also attempted to derive novel hydro-
gel properties. Once the thermosetting photopoly-
mers form a 3D component via VPP, the hydrogel
network can never be reworked, reshaped, repaired,
or recycled. A two-step aggregation strategy has benn
generated to generate 3D printed processable ther-
moset plastics; these transform 3D structures into
new arbitrary shapes and can repair damaged sites
[58]. A novel ink has also been proposed to achieve
desirable mechanical properties, by combining a 3D
printed composite with a filled silver ink in a hol-
low channel; this technique has achieved high print
speeds, high resolution, good mechanical properties,
and low volume shrinkage [59]. Elastic materials with
viscoelastic properties have also recently received con-
siderable attention. Researchers have developed a new
type of photocurable liquid crystal elastomer; it was
optimized for DLP printing and achieved a high dis-
sipation performance up to 27 times greater com-
pared to commercial elastomer [60].

2.2. Advances in the DLP printing process
Although the materials determine the optimal per-
formance of VPP, improvements in the printing pro-
cess can also improve the printing speed and the
hydrogels’ mechanical properties. Owing to the limit-
ations of the hydrogels’ softnesses, the preparation of
devices based on hydrogels with a high Young’s mod-
ulus remains difficult using DLP. In recent years, to
solve the problem of printing resolution and shape
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fidelity, considerable research has been devoted to the
improvement of DLP printing from the process per-
spective. For example, Sun et al established photo-
crosslinking theory and a set of standardizedmethods
to quantitatively evaluate printing resolution. In this
way, complex biological structures (e.g. ears, hands,
and hearts) could be printed accurately [64].Huh et al
compared the most commonly used photoinitiator
andUV absorber in cell printing, to ensuremaximum
DLP printability whilst maintaining cell activity [65].

Process-related research to expand the use of DLP
represents another hot topic. Li et al developed a
small, portable DLP printer that supports smart-
phones, by using an improved design and process; this
is expected to offer exciting opportunities for future
applications with limited resources, as well as in-situ
printing [66]. In addition, given the insufficient prop-
erties of single material and the uneven z-direction
mechanical properties of DLP, two further important
research fields for the expansion of DLP applications,
multimaterial printing andVP, have produced a series
of exciting results.

Single materials exhibit limited properties in
DLP 3D printing; however, it is difficult to com-
positely print multiple materials, owing to cross-
contamination. The high-resolution, high-speed
multimaterial manufacturing of various microstruc-
tures with novel functions and optimized properties
can be applied in metamaterials, bioinspired soft
robots [67], biodevices, optics, and other complic-
ated scenarios. Realizing multimaterial printing and
utilizing different materials can also resolve the con-
flict between the printability and biocompatibility of
certain hydrogels.

Over the past ten years, researchers have proposed
different methods to achieve multimaterial printing.
The first is to switch the materials in the printing
device. The basic idea is to change the material in
the vat manually/automatically or to switch mul-
tiple vats containing different materials automatic-
ally during DLP printing. Several researchers have
used a rotating platform to implement an automated
material-change sequence with vats containing dif-
ferent materials. But the printing process must be
stopped when changing vats, which makes the entire
printing cycle too time-consuming for cells, partic-
ularly when hundreds of layers of material change
are required. Wicker and MacDonald developed dif-
ferent strategies to realize multimaterial DLP print-
ing, including the vat exchange, single-bucket and
multimaterial exchange, and multitechnology hybrid
strategies to implement complex 3D devices, integ-
rated electronic devices, and structures with mech-
anical, electrical, and biochemical functions [68]. To
remove residual hydrogels and ensure printing qual-
ity, a newly developed waste exchange mechanism
(including air jets to remove uncured hydrogels after
each exposure) has also been proposed to assist in
multimaterial printing [69].

Microfluidics represents another solution for
multimaterial problems. Miri et al proposed a mul-
timaterial printing method using a microfluidic
device to assist in the single-chamber multimater-
ial exchange process. A microfluidic device compris-
ing four on/off pneumatic valves was used to switch
between different (cell-loaded) hydrogels for layer-
by-layer multimaterial printing. Compared to tradi-
tional printers, this system offers unique advantages
in terms of multimaterial capabilities at a high spatial
resolution [70] (figure 4(A)).

Another method is to develop new processes
based on the VPP principle. Boydston et al proposed
a multiwavelength photopolymerization process that
utilizes multimaterial actinic space control (MASC)
to realize chemically selective control of the material
composition. The acrylate component was preferen-
tially cured under long wavelength (visible light) illu-
mination, though epoxide components were cured
under short wavelength (UV) illumination; this facil-
itated the production of multimaterial components
containing a hard epoxide network, in contrast to
soft hydrogels. MASC formulations spatially control
the mechanical anisotropy, chemical inhomogeneit-
ies, and spatial scalability of the printed models; this
has had a major positive impact on 4D printing [71]
(figure 4(B)). Nanomaterial functional inks have also
been developed for this purpose: researchers have
proposed an internal printing method based on the
pores of internal nanoparticles (NPs); this allows the
guest material to be locally printed in the host mat-
rix, to realize multimaterial printing [72]. Mao et al
combined multiple curing-on-demand printheads to
produce thin layers composed of different materials
during the selective curing of the DLP projector; the
remaining uncured materials were effectively cleaned
by post-curing equipment, to manufacture 3D mul-
timaterial objects [73].

However, the inherent defect of the DLP 3D
printing technology has not been fully resolved. The
existing solutions led to longer print cycles, material
wastage, and increased costs, which is contrary to the
original intention of DLP technology: high precision
and rapid one-shot molding. In future, balancing the
cost, resolution, and printing speed and implement-
ing the properties of differentmaterials to realizemul-
tifunctional multimaterial printing will remain a sig-
nificantstill challenge.

The layer-by-layer stacking mode of DLP causes
anisotropy problems of the biological andmechanical
properties between the directions along (xy plane)
and perpendicular (z direction) to the layer. In addi-
tion, it establishes geometric constraints (including
poor surface quality) and makes it difficult for the
DLP to perfectly print hollow structures without sup-
port. To solve these problems, a VP method based
on DLP projections has been proposed. VP can rap-
idly print cylindrical hollow structures without aniso-
tropy. A system designed for VP must include three
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Figure 4. Advances in the printing process of DLP: multimaterial printing. (A) Schematic of the bioprinter, including a UV lamp
(385 nm), optical lenses and objectives, a DMD chip, and a microfluidic device [70]. Reproduced with permission. Copyright
2018, Wiley. (B) Schematic of custom multimaterial DLP-AM printer setup. A laptop simultaneously controls both the visible
light and UV projector and the printer [71]. Reproduced with permission. Copyright 2019, Springer Nature.

key elements: first, the light field must be patterned
at all locations to be cured; second, the lateral intens-
ity distribution of each beam must be adjusted to
compensate for resolution and energy absorption in
the hydrogels; third, oxygen must be dissolved in the
hydrogel, to control the threshold behavior during
polymerization.

The earliest VP was reported to produce a hol-
low structure in a few seconds, using DLP projec-
tion. Researchers have used holographic patterning
of the light field to fabricate structures. The struc-
ture could be constructed under moderate powers
(∼10–100 mW) within ∼1–10 s [16] (figure 5(A)).
In 2019, Kelly et al proposed a manufacturing
method that rotated the photopolymer in a dynam-
ically evolved light field; this printed the entire
complex object in one complete rotation, avoiding

the need for delamination [17] (figure 5(B)). To
improve print resolution and print speed, Loterie
et al [74] used multiple light patterns to illumin-
ate the container from various angles; this produced
a 3D distribution of cumulative light doses, allow-
ing the hydrogels to be cured locally as desired.
They also developed a high-resolution volumetric
method with integrated feedback to ensure preci-
sion; with this, complex and hollow parts could be
reliably mass-produced at the centimeter level in
seconds (<30 s). Regehly et al introduced a dual
color technique called Xolography, which used pho-
toswitchable photoinitiators to induce localized poly-
merization under linear excitation from different
wavelengths; this facilitated VP of 3D objects with
complex structural features and good mechanical
functions. Compared with VP without feedback
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Figure 5. Advances in the printing process of DLP: volumetric printing. (A) Schematic of holographic volumetric 3D fabrication
system and example structures. Scale bars, 2 mm [16]. Reproduced with permission. Copyright 2017, AAAS. (B) Schematic of the
CAL volumetric fabrication. Scale bars: 10 mm [17]. Reproduced with permission. Copyright 2019, AAAS.

optimization, the resolution of this technique was
approximately ten times higher, and the print speed
was 4–5 orders of magnitude faster than that of
MPP [75].

VP has shown great potential in the field of regen-
erative medicine, and researchers have also intro-
duced the concept of volumetric bioprinting (VBP)
[76], which can fabricate a cell-loaded structure of
any size and shape from within a few seconds to sev-
eral tens of seconds. Recent research has proposed a
new thiol-ene hydrogel for VBP. The thiol-ene system
with different ratios of isocyanurate and triethylene
glycol monomers exhibited a highly adjustable mech-
anical response and broadened the range of materials
and properties available for VBP [77].

However, this method is highly complex and
expensive. The printing process places very high
demands on the 3D geometry modelling and precise
control of the slices, masks, and exposure; this res-
ults in a complicated printing process with a com-
plicated corresponding control algorithm. Although
the volume-forming method can print some hol-
low circular structures without support, its char-
acteristic resolution (80–300 µm) does not match
that of DLP printing (∼30 µm). Efficient and rapid
VP is one of the major challenges in the develop-
ment of layer-based 3D printing technologies such
as DLP.

3. Hydrogel-based DLP: applications

By solving the strength and printability issues and
broadening the printing processes of hydrogels, their
hydrophilic, soft, and good biocompatibility charac-
teristics can be brought into service, allowing them
to be applied in a wider range of fields. This section
is divided into three sections. The first section intro-
duces the latest advances in highly biocompatible
hydrogels in the fields of 3D cell culture, cell printing,
and drug delivery. The second section focuses on the

composite physical and chemical properties of hydro-
gels and reviews their application in the preparation
of functional biological microdevices such as micro-
fluidic chips and biosensors. The third section con-
siders the soft and temperature-sensitive properties
of hydrogels and summarizes their progress in soft
robots, memory polymers, and complex structures
used to simulate certain physiological functions.

3.1. Tissue engineering and regenerative medicine
By modifying or combining them with other mater-
ials, hydrogels exhibiting certain mechanical proper-
ties can be used to prepare biodevices to be implanted
in vivo, to thereby achieve cell 3D culture and even
in-vitro cell printing. In addition, in-vitro tissue/or-
gan models based on hydrogel materials are widely
used for drug screening and treatment applications.

A biological device for implantation (e.g. a scaf-
fold) must be not only biocompatible for cells
and human bodies but also nontoxic and degrad-
able; this means it must have minimal impact on
the newly formed extracellular matrix (ECM). The
implantation device should be porous, strong, and
stable, to provide an environment for cell seeding,
growth, and differentiation [78]. Hydrogels, which
are soft and wet with anisotropic network struc-
tures, resemble human tissues and are expected to
be widely employed in tissue engineering and bio-
mimetic structures. Several studies have focused on
the development of new hydrogel-based biological
devices.

The main biological devices employed for
implantation are tissue engineering scaffolds. DLP
facilitates the fabrication of 3D tissue engineering
scaffolds with high-resolution microstructures and
controllable biochemical and mechanical properties
[79]. The resolution of the tissue engineering scaffold
influences its suitability for defect sites, its porosity,
its ability to promote nutrient and growth factor
delivery, and its cell loading capacity [80]. DLP
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Figure 6. Applications of tissue engineering and regenerative medicine based on DLP 3D printing technology. (A) (a) Various
NGC CAD designs (left column) and the corresponding 3D-printed NGCs (right column). (b) 3D-printed human life-size NGC
[87]. Reproduced with permission. Copyright 2018, Elsiver. (B) Schematic of the bioprinting process to fabricate dECM tissue
constructs based on tissue-specific hiPSCs [92]. Reproduced with permission. Copyright 2018, Elsiver.

3D printing can achieve precise microstructural
properties that are critical for producing scaffolds
for bones [50, 51, 78, 81] and ears [4], as well as
other tissue engineering scaffolds based on hydro-
gels. The parameters of the system are easy to adjust,
which helps to improve the resolution, biocompat-
ibility, and mechanical properties of hydrogel-based
scaffolds.

Poly-ε-caprolactone [34], poly(propylene
fumarate) [79], PEG, and their derivatives [82]
have been widely used in the preparation of biolo-
gical devices for implantation, owing to their fast
printing speed, good photopolymerization proper-
ties, and biodegradability. In 2007, a porous, degrad-
able hydrogel scaffold with a well-defined structure
comprising 147 µm pores and 730 µm-diameter

channels was designed to assist in cell elongation,
cell proliferation, and fiber formation in vitro [83].
Owing to their perfect overall performance, PEG-
based hydrogel scaffolds have been used in the study
of humanmesenchymal stem cells [84]. However, the
cell adhesion of these materials is typically limited;
hence, chitosan [85], PCL [86], and other materials
are generally used to improve cell affinity.

In addition, hydrogels are often used to create vas-
cularized tissues or biomimetic substitutes for human
tissues and organs. For example, a nerve guidance
conduit for implantation has been developed to help
repair damaged nerves [87] (figure 6(A)).

The use of DLP to prepare porous, degradable tis-
sue engineering scaffolds with complex structures has
become a current research trend. However, owing to

10



Biomed. Mater. 17 (2022) 042002 X Mo et al

material limitations, the mechanical properties and
biocompatibility of DLP-prepared tissue engineering
scaffolds are still not as good as those of scaffolds
prepared by traditional methods. Stronger mech-
anical properties, personalized shapes, and higher
printing accuracies represent the future development
directions.

Traditional 2D cell culture models or animal
experiments for pharmacological studies are expens-
ive, require a long test period (∼2–3 years), and
entail certain ethical risks; furthermore, they can-
not realistically simulate the 3D microenvironment
of the human body. DLP printing can construct vari-
ous complex 3D biomimetic microstructures quickly
and with high throughput in vitro for 3D cell cul-
tures; this is important for studies into drug screen-
ing, physiology, and pathology. In recent years, an
increasing number of 3D cell culture studies have
focused on various normal cells [88] or cancer cells
in a specific microenvironment (e.g. liver cancer [89]
and breast cancer [82] by using 3D hydrogels. Most of
these studies used DLP-constructed hydrogel micro-
structures to study the behaviors and interactions
of cells [especially cells differentiated from induced
pluripotent stem cells (iPSCs)] [90] or to assist in the
construction of human biomimetic tissues (e.g. nat-
ural retinal structures [82]).

The structural and mechanical properties of the
tissue significantly influence the process. Compared
with the simple protein matrix used in current cell
culture systems, the native ECM is rich in a variety of
proteins, collagen, glycosaminoglycans, and growth
factors; these provide a complex microenvironment
to improve cell viability. However, for a long time,
the use of an ECM in-vitro 3D cell culture has been
largely limited to coatings or simple geometries. In
recent years, an increasing number of researchers have
used ECM- and hydrogel-based DLP to construct
microenvironments in vitro.

The great challenge in developing an in vitro
model lies in the limitations of recapitulating the
microenvironments of organs, owing to the com-
plexmicroarchitectures and diverse cell combinations
[91]. Based on a rapid DLP, Chen et al generated
a patterned liver dECM with adjustable mechanical
properties for the disease modelling of liver can-
cer in vitro (figure 6(B)) [92]. Alessandri et al [93]
proposed a microfluidic device that could gener-
ate submillimeter-scale hollow hydrogel spheres, to
produce a ECM layer coating (with a thickness of
a few microns) for 3D cell culture. They encapsu-
latedcells within the capsules and observed a neg-
ligible loss of viability during their further differ-
entiation into neurons. iPSCs can be wrapped in
hydrogel- or ECM-based microstructures in vitro to
proliferate and differentiate into the desired cells.
Tissue-matched dECM bioinks provide a favor-
able environment for maintaining the high viability
[94]. In one study, a capsule was decorated with a

continuous ECM layer, to mimic the basement mem-
brane of the cell wall; this was used to encapsu-
late human neural stem cells derived from human-
inducednpluripotent stem cell (hiPSC) with negli-
gible loss of activity [93]. spatial patterning of pro-
teins is useful for defining the microenvironments
of cultured cells in numerous biological applications.
Based on aDLP strategy, any 2D or 3D stable gradient
microstructure can be accurately defined from artifi-
cial extracellular matrix proteins [95].

Within 3D cell culture, another difficult prob-
lem in making/simulating artificial tissues or organs
is the creation of blood vessels that transport nutri-
ents to cells inside them. Animal organs contain
different fluid networks of physical and chemical
entanglement that provide a rich extracellular envir-
onment. In addition, organs in the human body
also feature independent vascular systems. The abil-
ity to fabricate diverse topological microstructures in
biocompatible and aqueous environments can alter
the research paradigm of biomaterials and tissue
engineering. Without sacrificing material or perfu-
sion, Zhu et al created prevascularized tissues with
complex 3D microarchitectures; these could encap-
sulate different cells directly in a hydrogel with a
precisely controlled distribution, to mimic native
vascular tissues [96]. They also generated special
shape structures using hydrogels; these are import-
ant for the 3D culture of cells in vitro. For example,
a gear-like microstructure was fabricated by pho-
tocrosslinking a PEGDA hydrogel mixed with hep-
atocytes and fibroblasts in a microfluidic channel,
using DLP [97].

Cell printing using cell-containing materials to
controllably assemble cells has become a research hot-
spot. The porous hydrogel structure prepared viaDLP
can precisely control cell distribution, connection,
alignment, and proliferation. In particular, the DLP
system provides a noval method for the cells and
bioinks that can simulate the key features of the native
microenvironment. Therefore, cells can be arranged
in a highly ordered geometry and can continuously
interact with the surrounding matrix to form tissues
with specific functions.

DLP cell printing enables the patterning of vari-
ous functional elements, including living cells, bio-
molecules, and NPs. For example, tissue-specific
ECM bioinks can be used to create patient-specific
tissues, maintaining the high viability and matur-
ation of hiPSC-derived cells via their biocompat-
ibility and almost nonexistent immune rejection.
Various hydrogel cell-printing processes and meth-
ods for cancer research have also been developed.
Using DLP, Zhang et al employed an aqueous
two-phase emulsion bioink containing two immis-
cible cells/GelMA mixtures and poly(ethylene oxide)
to construct cell-loaded porous hydrogels with three
different cell types; this showed enhanced cell viabil-
ity and proliferation.
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Figure 7. Applications of drug studies based on DLP 3D printing technology. Schematic of the DLP setup to fabricate
modified-release tablets [104]. Reproduced with permission. Copyright 2019, Elsiver.

DLP 3D printing has become one of the primary
methods for constructing 3D culture models and
realizing cell printing. The use of IPS-induced cells
and cancer cells for pathology and drug screening
research, combined with a more refined and bionic
three-dimensional microenvironment construction
in vitro, shows considerable potential for future
research.

Hydrogel-based DLP printing has been applied
in drug research and related fields, owing to its cus-
tomization and high printing accuracy. 3D Printing
can be used in different drug development stages,
including screening, testing, manufacturing, dispens-
ing, and delivery [98].

Microsphere structures that can encapsulate
drugs and deliver them to the location of the dis-
ease with timed release have been applied in drug
delivery studies. A new type of poly(vinyl alco-
hol)/hydroxyapatite (HA) composite microsphere
with different HA contents for drug applications was
developed using DLP [99]. The in vitro bioactivity
and drug release behavior of the microspheres were
evaluated; the results showed microspheres as being
good drug delivery vehicles for bone tissue engineer-
ing. Thismethod can also be used in high-throughput
drug research. Alexander et al used DLP to print
photocurable inks, to create high-throughput drug
delivery systems for the release of antidepressants
(paroxetine) [100].

In transdermal systems, drugs do not pass
through any metabolic system, resulting in a higher
degree of bioavailability; this can be used to pro-
mote sustained drug release under control. Vaccin-
ation by transdermal drug delivery has become a
promising alternative to traditional routes. Different
microneedle systems have been fabricated via DLP

printing to achieve drug delivery [101]. Microneedle
with appropriate geometries can relieve pain and
reduce tissue damage during insertion. Another
hydrogel-based pyramid and tapered microneedle
structure has been applied for transdermal delivery
of insulin [102]. DLP 3D printing technology has also
been explored as a method to manufacture dosage
forms containing drug sensitizers, to reduce the bur-
den of pills and improve patient compliance [103].
Kadry et al used DLP 3D printers to prepare PEGDA-
based ghost tablets that released the trapped drug but
did not disintegrate [104] (figure 7). A simple and
effective model based on machine learning was also
established to predict the drug release profile of 3D
printed PEGDA-based tablets [105].

Smart hydrogels are also available for person-
alized and programmable medical applications.
A drug-loaded system based on 3D-printed pH-
responsive hydrogels has been proposed; it showed
higher swelling and faster drug release under higher
pH, large-surface-area, and complex structural con-
ditions [106].

DLP can create complex geometries for variable
drug release kinetics, facile drug therapy personaliz-
ation, and cost reduction, by manufacturing devices
with individualized doses. In addition, DLP facilit-
ates the fabrication of complex micron-sized tissue
scaffolds and biomimetic drug test systemmodels for
simulated in vivo conditions. However, some limit-
ing factors remain (e.g. regulatory issues) and may
hinder market development. Research on DLP-based
drug delivery requires further investigation [107].

3.2. Functional microdevices
‘Functional microdevices’ refers to systems and tech-
niques that typically perform tasks on a microscale.
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These devices can be used for diagnostic and/or thera-
peutic purposes in biomedical fields. Functional bio-
logical devices range from flexible electronic devices
and biosensors to microfluidic chips (some of which
facilitate multiple functions). With the improvement
in hydrogel-based 3D printing, methods to manufac-
ture functional microdevices with higher complexit-
ies and functionalities are also of great significance
in the fields of biomedical research, industry, and
healthcare. Hydrogel-based DLP 3D printing com-
bines the advantages of softness, scalability, and fast
DLP printing speed, to improve the manufacturing
speed and scalability of functional biomicro devices
and to reduce their cost.

Microfluidic chips have a wide range of applica-
tions, including cell cultures, cell sorting, and drug
screening. Recent studies have focused on micro-
fluidic chips with high-aspect-ratio microchannels
and complex microvalve micropump structures, bio-
sensors, responsive flexible devices, and flexible soft
actuators that are responsive to external stimuli (espe-
cially the electrical stimuli provided by hydrogels).
The use of DLP printing in the manufacture of
microfluidic chips can be divided into mold-based
and one-step molding methods [108]. The one-
step molding method facilitates the construction of
microfluidic chips with 3D complex structures and
reflects the advantages of DLP printing; hence, we
mainly discuss this method. DLP printing elimin-
ates the cumbersome lithography process by using a
mask; it acheives higher precision and can prepare
structures with smaller feature sizes. Compared with
other 3D printing technologies, the minimum chan-
nel size ofmicrofluidicsmanufactured viaDLP-SLA is
154± 10µm, and their roughnesses can be asmuch as
0.35 µm [109].

Currently, microfluidic chip research comprises
two approaches. Several studies have focused on pre-
paring high-precision, high-depth-ratio, and high-
throughput microfluidic chips; meanwhile, others
have committed to preparing functional microstruc-
tures such as microvalves and micropumps, using
DLP to realize precise control and rapid responses to
cells and fluids.

The microchannel is the core structure of the
microfluidic chip. The printing of microchannels
with high aspect ratios represents an important
research topic for 3D-printed microfluidic chips.
Gong et al developed a mathematical model to help
minimize the channel width to four pixels in the
construction plane; this laid the foundation for the
3D printing of microfluidics with <100 µm fea-
tures [110]. Gong et al also developed a customized
DLP 3D printer with specially designed low-cost cus-
tom hydrogels, to realize flow-path cross-sections as
small as 18 µm × 20 µm with a flat-panel resolu-
tion of 7.6 µm. A novel channel-narrowing technique

has also been developed to generate high-aspect-
ratio flow channels <25 µm wide and 3 mm tall
(figure 8(A)) [111].

Considering its high resolution and ability to
print complex structures, DLP printing is suitable
for preparing high-density microfluidic devices, such
as valves and pumps. A miniature Tesla pump was
designed and manufactured with a 43 µm lateral
and 30 µm thickness resolution. This could drive
a mixer network to generate a microfluidic gradi-
ent, which is ideal for flow-sensitive microfluidics
[112]. Another microtransporter with a wirelessly
controlled Archimedes screw pump mechanism was
also designed and demonstrated its potention in
realizing space-time-controlled collection, transport,
and drug delivery; furthermore, it produced mag-
netic nanohelices withinmicrofluidic channels [113].
Gong et al integrated multiple valves, piping, and
valve replacement chambers (DC) on a single micro-
fluidic device and created a compact 3D printing
pump. The durability of the 3D printing valves was
significantly improved up to one million actuations
(figure 8(B)) [114].

In recent years, the ‘standardized production’ of
microfluidics-based organoids has become a research
hotspot. Owing to the manufacturing limitations of
the core pneumatic membrane valves (PMVs), the
microfluidic large-scale integration chips are diffi-
cult to apply for tissue cultures and organoids with
sizes exceeding tens of micrometers. Compera et al
developed a process for manufacturing a scaled-up
PMV via DLP, and they introduced new develop-
ments to highly parallel and high-throughput 3D cell
culture and screening applications [115]. Carberry
et al used DLP to print thioester-functionalized PEG
elastomer. The sacrificial thioester elastomer struc-
ture can be quickly manufactured in a soft tissue cul-
turemedium for 3D characteristic arrays as large as an
organoid; this will help when studying the influence
of epithelial geometry and spacing on the growth and
differentiation of intestinal stem cells [116].

DLP achieves microfluidic printing with higher
precision and a greater depth ratio, and it facilit-
ates the printing of microvalves and micropumps
with complex structures, thereby enabling the expan-
sion of microfluidic chip functions (e.g. the ‘stand-
ardized production’ of organoids). However, DLP-
printed microfluidic chips cannot achieve the same
resolution as traditional lithography methods, and
the speed of chip preparation is unsatisfactory. These
represent important directions for future research
into hydrogel-based microfluidic chips.

Conductive materials are important functional
materials; they are used as electrodes and wires for
signal transmission, heating, and sensing. Electroact-
ive hydrogels, which exhibit large deformations in
response to electric fields, have received significant
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Figure 8.Microfluidic chips and biosensors based on DLP 3D printing technology. (A) 3D printed high aspect ratio flow
channel(Physical photograph and SEM images) [111]. Reproduced with permission. Copyright 2017, RSC. (B) CAD designs,
schematics and microscope photos of a 3D printed membrane valve and pump [114]. Reproduced with permission. Copyright
2016, RSC. (C) Schematics of DLP setup to form the polyethylene glycol diacrylate structure based on the formation of the silver
nanoparticles [121]. Reproduced with permission. Copyright 2016, Wiley.

attention in recent years [107]. Hydrogels can be
mixed with materials offering different physical and
chemical properties to yield composite properties
(e.g. conductivity and magnetic responsiveness). For
example, hydrogels can be mixed with carbon and
graphene to realize a good electrical conductivity.
DLP projectors have been used as an energy source
to cure ink mixed with conductive particles such as
carbon nanotubes (CNTs) [117, 118], multi-walled
CNTs [119], dispersing polyaniline nanofibers and
graphene sheets [120] and a variety of conductive
NPs (figure 8(C)) [121–125]. A photocurable ink
with optimal conductivity and print quality can be

obtained by varying the blending ratio of the mixture
and printing parameters.

Conventional sensors are often fabricated based
on micro-electromechanical systems, which struggle
to create complex 3D structures; this makes it diffi-
cult to integrate multiple functions. Owing to their
good 3D structural forming capabilities, DLP 3D
printing has been used to produce integrated sensors.
DLP 3D printing has been used to integrate piezo-
electric, conductive layers and produce a complete
acoustic sensor capable of transmitting electrical sig-
nals [126]. Through the use of conductive materials,
DLP can assist in the development of smart materials
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offering strain sensitivity and shape memory effects;
these can be used for biosensors, electrically activ-
ated composites, stretchable circuits [119] and flex-
ible electronic devices such as soft robots and artificial
muscles [107].

The initial research used a highly ion-conductive
hydrophilic polymer (containing cationic or anionic
groups) as a highly ion-conductive hydrogel, to fab-
ricate a highly sensitive miniature pH sensor in situ
[127]. Acrylic hydrogels [e.g. poly(acrylic acid)] are
usually used to mix conductive NPs, to produce pho-
tocurable inks. Acrylic acid has been used as a func-
tional comonomer to introduce functional groups
that can covalently fix immobilize biomolecules upon
a microcantilever; this can act as a biosensor in a
standard immunoassay protocol [128]. Truby et al
have created a soft body sensitive actuator gov-
erned by a plurality of conductive features, to sim-
ultaneously implement tactile, proprioceptive, and
thermal sensing [129].

In addition, several researchers have combined
metal precursors with hydrogels to produce conduct-
ive 3D hybrid multilayer structures. Silver nitrate has
been incorporated into photocurable oligomers to
produce 3D biosensors [121]. Piezoelectric polymers
(barium titanate) were prepared via the incorpora-
tion of barium titanate (BaTiO3) to convert the NPs
into a photopolymer solution; this solution could be
exposed to a mask that could be dynamically changed
to generate user-defined microstructures [124].

To prepare 3D structures with different func-
tions, creative processes have also been developed to
acquire and assemble conductive particles. In one
study, the 3D structure was fabricated by dissolving
themetal salt in the starting liquid formulation,where
metal NPs were induced in situ after heat treatment
[122]. Another new particle assembly method used
acoustic tweezers during printing to fabricate embed-
ded wires with a 3D structure. Hexagonal acoustic
tweezers were used to pattern the conductive lines by
aligning and aggregating conductive NPs (e.g. copper
andmagnetite NPs) and carbon nanofiber-reinforced
nanocomposites [123].

With the development of the Internet of Things
and flexible devices, soft materials with conductive
properties are becoming widespread in the devel-
opment of wearable devices that require small bio-
sensors to collect data signals. The use of DLP to print
soft conductive hydrogels has become an import-
ant method in biosensor preparation. However, the
applications of biosensors are still limited, and their
large-scale application in daily life may still take
some time.

3.3. Soft robots and 4D printing
The soft properties of hydrogels offer opportunities in
the preparation of soft robots, soft actuators, and so
on. In recent years, large, reversible shape-changing

soft materials have found potential applications in
artificial muscles, soft robots [67, 130], wearable elec-
tronic equipment and electronic skin, and dynamic
functional architectures. Common hydrogels have
limited stretch-ability, and the commercially available
‘flexible’ hydrogels (with a finite elongation of 90%–
100%) are insufficient for advanced applications.
In recent years, several high-performance materials,
shape memory polymers, and metamaterials have
been developed. TogetherwithDLPprinting, they can
produce flexible devices, especially the high-precision
rapid prototyping of soft actuators and grippers.

Soft robotic systems require reasonable degrees of
freedom and the ability to undergo large deforma-
tions. Owing to the difficulty of fabricating complex
molds, these soft robots have limited geometric com-
plexity. DLP printing of elastomers can be used to
directly produce highly deformable structures such
as soft robot claws, soft balloons, and soft actuat-
ors. Commercial photocurable hydrogels with elastic
properties can be applied in DLP systems. However,
these materials suffer from limitations of poor elong-
ation before breaking and non-adjustable mechan-
ical properties. Due to the lack of suitable materials,
the use of DLP printing for stretchable and flexible
devices has been limited; however, recent studies have
begun to respond to this call.

Patel et al investigated high-tensile and high-
elasticity photocurable materials. They demon-
strated the abilities of certain hydrogels to produce
objects capable of withstanding 270% tensile strain,
and the printed soft gripper exhibited large local
deformations, allowing it to grasp an object [131]
(figure 9(A)). They developed a highly stretchable and
UV-curable hydrogel method using an acrylamide-
PEGDA hydrogel precursor to produce structures
offering high resolution (up to 7 µm), fidelity,
stretchability (>300%), and biocompatibility [132].

Researchers have demonstrated that the mech-
anical properties (including stretchability) can be
adjusted by adjusting the methacrylate content [133].
Thrasher et al developed a series of materials suitable
for elastomeric objects, including silicones, hydro-
gels, and their hybrids. The printed sample exhib-
ited a maximum elongation of 472% [134]. Gomez
et al proposed a self-healing elastomer system that can
achieve an extreme elongation of up to 1000%. These
elastomers can be 3D printed as modules, which can
be assembled to form a highly complex large-scale
functional soft robot [135].

In addition, studies have also focused on adding
magneticmaterials to photocurable hydrogels, to pro-
duce soft actuators and structures that can respond
to magnetic fields. Multiple magnetic devices and
actuators have been prepared using DLP 3D print-
ing with magnetic and nonmagnetic hydrogels [136].
For example, magnetic Fe3O4 NPs have been used
to manufacture soft actuators of any shape (via
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Figure 9. Soft elastomers and soft actuators based on DLP 3D printing technology. 3D printed pneumatically actuated soft
actuators with large deformation bending under pressurized air along with FEA simulations and a 3D printed gripper in the
process of grabbing an object [131]. Reproduced with permission. Copyright 2016, Wiley.

multimaterial printing) in a freely assembled man-
ner; this can be applied in controllable delivery with
remote magnetic control [137].

Magnetic bioreactors are better able to provide a
stable force for the cells whilst avoiding direct manip-
ulation of the material. Ajiteru et al manufactured
a hydrogel embedded in myoblasts, using DLP for
magnetic-mechanical stimulation. The magnetic sys-
tem accelerated the differentiation of mouse myo-
blasts in the hydrogel, without any evidence of cyto-
toxicity [138].

Research into soft elastic materials has great
application potential in wearable devices and bio-
sensors. However, the applications of these hydro-
gels usually require special properties that they do not
possess on their own, so expanding their hydrophili-
city, biocompatibility, and printability in the future
will help to further expand their application areas.

4D printing is a concept derived from 3D print-
ing, where a time dimension is added to the process.
More precisely, 4D printing uses materials that can be
automatically deformed, which is well suited by the
softness of hydrogels. 4D printing directly incorpor-
ates a designed deformation process into a material,
which can be automatically folded into a correspond-
ing shape without connecting any otherequipment.
Users can set the model and time, and the materi-
als are deformed into the specific shape within the
set time. This self-assembled printing method was
first proposed by the Self-Assembly Lab of MIT. They
studied the use of rigid polymers andwater-strainable
materials to produce self-assembled structures. The
structure was placed in water and the water-swelling

material was bent to drive the hard material to self-
assemble [139, 140].

4D printing is achieved by combining 3D print-
ing with the use of soft and deformable materi-
als; it requires 3D printed objects to be able to
respond to external stimuli (e.g. water, temperature,
pH, and light), and it can change their shape, prop-
erties, and functions over time. However, commer-
cially available UV-curable elastomers (whose frac-
ture strain is insufficient for certain applications)
require large elastic deformations. Hydrogels are usu-
ally soft, have good toughness and deformation prop-
erties, respond to stimuli, and can be transformed
into a specific shape when simply modified. Hydro-
gels with these properties have become one of the
most suitable materials for 4D printing. These hydro-
gels are referred to as shape memory hydrogels or
smart hydrogels; these have been reported in the
printing of high-resolution self-assembled structures
[136, 141, 142].

The most-studied hydrogel is the temperature-
sensitive shape-memory polymer. Upon heating, the
shydrogel softens, relaxing the constraint of the vari-
able elastomer and allowing to transformto a new
shape, which can be reprogrammed into other shapes
[143]. For example, Cosola et al recently prepared
a thermosetting H-bond stabilized shape memory
polymer that exhibited an excellent, adjustable,
thermally triggered shape-memory response [144].
In recent years, more diverse shape memory hydro-
gels have been developed. Hingorani et al [145]
proposed adjusting the mechanical properties (e.g.
stretching, stiffness, and durability) of commercial
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Figure 10. Smart materials based on DLP 3D printing technology. (A) Application demonstrations of SH-SMPs. 3D printed stent
(I) as-printed. (II) Broken. (III) Healed. (IV) Deformed. (V) Recovered. (Scale bars: 4 mm) [141]. Reproduced with permission.
Copyright 2019, ACS Publishings. (B) Multimaterial grippers with the transition between as printed shape and temporary shape
to grab an object [142]. Reproduced with permission. Copyright 2016, Springer Nature. (C) A 3d printed circuit can be turned on
and off with the memory shape change of the material [133]. Reproduced with permission. Copyright 2015, Wiley.

UV-cured elastomers by adding materials and cross-
linking agents. Shiblee et al [146] introduced a
novel double-layer poly(N,N-dimethylacrylamide-
stearyl acrylate) [P(DMAAm-co-SA)] reversible
shape memory hydrogel system, which featured a
floral structure that could change its shape after
immersed in water; they also developed an 3D soft
gripper that could hold, transport, and release sub-
stances underwater.

With the development of materials, advances in
technologies used for achieving 4D printing have
emerged [36, 147]. Ge et al proposed a newmethodto
create high-resolution (up to a few microns) mul-
timaterial structures with thermomechanical proper-
ties suitable for achieving controlled shape-memory
behavior [142] (figure 10(B)). Most hydrogel-based
4D printed materials are (meth)acrylate thermosets
featuring a permanently cross-linked covalent net-
work and cannot be repaired if damaged. Research
has reported a dual-network self-healing system
and a new printing process for high-resolution
and self-healing printing; this has good compatib-
ility and high resolution (30 µm), and damaged
parts can self-heal under certain conditions [141]
(figure 10(A)).

Smart hydrogels that respond to electrical and
magnetic stimuli are important for flexible wearable
devices. The layer-by-layer DLP printing of methac-
rylated semicrystalline molten macromonomers has
been reported for the rapid manufacturing of shape-
memory circuits. By changing the memory shape of
the material, the circuit can be turned on and off
[133] (figure 10(C)). This work reveals the potential
of 4D printing for the development of flexible elec-
tronic devices.

Another new method facilitates the curing of
acrylic hydrogel compositions containing bioma-
terials (especially membrane proteins), to preserve
the biological functionality of these proteins; this
provides a fourth dimension for the construct. The
4D printing of bioinspired nanomixed electrodes for
water-splitting applications [using proton-pumped
bacterial rhodopsin, silver NPs (Ag NPs), and CNTs
with hydrogels to print photoelectrochemical cells]
achieved high durability and lowpotential onset char-
acteristics [136]. Hu et al imitated the dynamic beha-
vior of plant systems to stimuli and achieved the
microbionic 4D printing of pH-responsive hydro-
gels. These could gain multiple degrees of freedom
through pH-triggered expansion, contraction, and
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twisting, and they mimiced the bionic complex shape
deformation [148]. Hydrogels with biometric sites
have been used as biosensors. For example, hydrogels
can be modified to exhibit biomolecular recognition
capabilities, which results in a hydrogel sensing layer
with a 3D shape that can self-assemble when it recog-
nizes antibodies [34].

Although a variety of exciting smart hydrogels
have been developed, the biocompatibility of these
shape-memory polymers and the speed of response
deformation are limited; furthermore, the materials
typically respond only to a single external stimulus.
The application prospects of self-assembled print-
ing components based on shape-responsive hydrogels
will promote the development and improvement of
shape-memorymaterials. Future smart hydrogels will
develop towards better biocompatibility and more
diversified responsiveness.

Natural objects or tissues/organs in the human
body typically have complex internal structures, spe-
cial properties, or complex functions. The fabrication
of structures with complex geometries is important
for implementing complex functional microdevices.
Hydrogel-based DLP 3D printing technology is suit-
able for constructing complex structures with smal-
ler feature sizes. In recent years, following the
rapid development of biomedicine, the simulation of
physiological functions has been realized by printing
out the complex pipeline networks and microenvir-
onmental microstructures of living organisms. The
implementation of complex topology designs has
become a research trend. For example, the realiza-
tion of biomimetic vasculature with a complex struc-
ture is an important step in achieving organ printing
in vitro. Using hydrogels to establish intravascular and
multivascular networks, researchers have explored
the oxygenation, the flow of human red blood cells
during tidal ventilation and near-airway dilation, to
simulate the ventilation process of the alveolar and
surrounding tracheal networks [149]. In future, the
softness of hydrogels will be used to prepare biomi-
metic structures of complex organs in vitro, which
will play a positive role in human understanding and
exploration.

4. Hydrogel-based DLP: challenges and
perspectives

As mentioned above, DLP is still limited by the prob-
lems of available materials, multimaterial printing,
and anisotropy in the printing process, despite the
recent progress. The application of hydrogel-based
DLP is still in its infancy and has yet to reach the lives
of ordinary people.

Although there have been considerable advances
in new photocurable materials, there are still rel-
atively few hydrogels suitable for VPP, especially
materials with both good biocompatibility and good

mechanical properties. This will represent a major
challenge in the future development of DLP printing.
Specialized hydrogels with specific rheological, bio-
logical (in addition to high biocompatibility), mech-
anical, physical and chemical properties must be
developed over the next few decades.

4D printing eliminates the process of component
assembly, achieves superior integration, and is more
customizable; therefore, it has broader application
prospects and has accordingly received significant
research attention in recent years. 4D printing has sig-
nificant potential in solar energy, medicine, sensors,
robotics, and aerospace. A main future trend is
that 4D printed products that can be customized
by users and changed with external stimulus sig-
nals will become a main development direction of
the future manufacturing industry. The self-assembly
feature will also change the traditional parts-machine
assembly mode to a design-fabricate-self-assembly
one, which will greatly reduce time and transport-
ation costs and profoundly influence people’s life-
styles. For 4D printing, owing to the complex process
and harsh requirements of active materials, finding
proper materials and accurately controlling the shape
deformation are crucial challenges.

DLP 3D printing uses DMD chips for surface
exposure. The printing resolution depends mainly on
the resolution of the DMD (which is as small as 7µm)
when printing complex structures. However, design-
ing a topology with bionics or other special func-
tions is more challenging than designing a simple and
rapid manufacturing process. Considerable research
has focused on designing, optimizing, and fabricating
complex structures via 3D printing; this will be one of
the areas of rapid development for DLP 3D printing.

Artificial intelligence (AI) and big data are power-
ful tools for solving complex manufacturing prob-
lems. In the field of AI (especially machine learn-
ing), data play a pivotal role. DLP 3D printing can
provide a large quantity of state data at any moment.
AI provides a variety of methods with which to
improve current 3D printing technologies, includ-
ing DLP 3D printing from existing data sets [150].
Currently, AI has been applied in 3D printing to
facilitate intelligent, efficient, high-quality, mass cus-
tomizable, and service-oriented production processes
[151]. AI algorithms can also be used to optim-
ize material for 3D printing. Recently, a research
team fromMIT proposed amachine learningmethod
that automatically identified the ideal formulations of
DLP printing materials to achieve the optimal mech-
anical properties after only 30 experimental itera-
tions. Thismethod is expected to be extended to other
material design systems, to accelerate the automatic
discovery of the ideal materials for 3D printing [152].
Future DLP 3D printing will form an important
component of intelligent manufacturing combined
with AI.
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5. Concluding remarks

Most hydrogels offer the advantages of softness,
biocompatibility, and adjustable physical and chem-
ical properties. Combined with the high resolution
and high-efficiency characteristics of DLP, hydrogel-
based DLP printing has managed to prepare com-
plex structures and devices. The planar printing
method not only has opened new avenues in func-
tional microdevices including microfluidics and oth-
erbiomedical devices, but also has showed the poten-
tial of the application in tissue engineering, and
drug delivery. Despite the current rapid develop-
ment of the field, several challenges remain that limit
its further development. First, more diverse biocom-
patible hydrogels with specific properties must be
developed for 3D (or 4D) bioprinting applications.
Second, innovative research is required to solve the
multimaterial problems and anisotropy; this should
develop new processes to expand the application
range of planar 3D printing technology. Currently,
4D printing technology with self-assembly repres-
ents a research hotspot, producing 3D materials with
biological properties (e.g. biospecific binding sites)
that can implement new features in new ways. Spe-
cial soft and complex structures are of great import-
ance in microelectronics, soft actuators, and biomed-
ical devices; these were difficult to prepare accurately
and quickly in the past. With the development of AI
and big data technology, the development of DLP
3D printing systems that are sufficiently intelligent
and systematic to achieve precise control of the print-
ing process will represent a development direction.
We believe that in the future, hydrogel-based DLP
printing will flourish as a means of solving existing
problems and challenges, and it will help promote
the development of biomedicine and humans’ self-
understanding and quality of life. We believe that this
review, which comprehensively lays out (to the best of
our knowledge, for the first time) the current state of
hydrogel materials, process, and application research,
will give researchers and potential practitioners the
insights required to help realize these developments.
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