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Supplementary Figure 1. The size distribution of regular callus (R-Callus), fragmented callus 

(F-Callus), and suspension cells (S-Cell) was measured by the laser particle analyzer. 
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Supplementary Figure 2. (a) The optical images of extruded filaments and (b) the continuously 

printed scaffold demonstrated the clog of printing S-Cell bioink with a 27G nozzle. (c) Quantitative 

analysis of cell viability after bioprinting with 18G, 22G, 24G and 27G nozzles. Kruskal-Wallis 

test, ns, not significant; **P < 0.01, ***P < 0.001. Scale bars: 500 μm (a), 2 mm (b). 
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Supplementary Figure 3. Influences of the S-Cell concentration on bioprinting and cell 

viability. (a) The representative images of extruded filaments composed of 0.24, 0.12 and 0.06 

g/mL S-Cell formulations by using a 24G nozzle. (b) Quantitative analysis of filament width. 

Kruskal-Wallis test, ns, not significant; *P < 0.05, **P < 0.01. Scale bars: 500 μm (a). 
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Suppletmatry Table 1. Existing studies on the 3D bioprinting of land plant cells. Row 1 [1]: Reproduced 

from [1], © IOP Publishing Ltd. All rights reserved. Row 3 [3]: Reprinted from [3], Copyright (2017), with 

permission from Elsevier. Row 4 [4]: Reprinted from [4], Copyright (2019), with permission from Elsevier. 

Row 6 [6]: John Wiley & Sons. © 2021 Wiley-VCH GmbH. Row 7 [7]: Reprinted from [7], Copyright 

(2020), with permission from Elsevier. Row 8 [8]: Reproduced from [8]. CC BY 4.0. Row 9 [9]: 

Reproduced from [9]. CC BY 4.0. 

Cell Source 
Nozzle 

Diameter 
(mm) 

Representative 
Bioprinting Structures 

(Scale bars: 2 mm) 

Quantitative 
Cell 

Viability 
After 

Bioprinting 

Quantitative 
Cell Growth 

After 
Bioprinting 

Year of 
Publicaton Ref. 

Basil cells 
(Ocimum 

basilicum L) 
0.610 

 

N/A 
~4-Fold after 

20-day 
culture 

2017 [1] 

Basil cells 
(Ocimum 

basilicum L) 

0.250 
0.840 N/A 

N/A, but 
more dead 
cells in the 
narrower 

nozzle group 

N/A 2020 [2] 

Lettuces 
cells 

(Valerianella 
locusta) 

0.838 

 

50-60% at 
day 0 N/A 2019 [3] 

Carrots cells 
(Daucus 

carota L.) 
1.0 

 

N/A 
2 to 3-Fold 
after 35-day 

culture 
2020 [4] 

Protoplast 
(Arabidopsis 
thaliana and 

Soybean) 

Arabidopsis 
thaliana: 
0.159; 

Soybean: 
0.413 

N/A 

50-60% at 
day 0; 

~30% at day 
5 

N/A 2022 [5] 
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Cell Source 
Nozzle 

Diameter 
(mm) 

Representative 
Bioprinting Structures 

(Scale bars: 2 mm) 

Quantitative 
Cell 

Viability 
After 

Bioprinting 

Quantitative 
Cell Growth 

After 
Bioprinting 

Year of 
Publicaton Ref. 

Rice cells 
(Oryza 
sativa) 

0.840 

 

N/A N/A 2021 [6] 

Zinnia cells 
(Zinnia 
elegans) 

N/A 

 

-35% at day 
2 N/A 2021 [7] 

Zinnia cells 
(Zinnia 
elegans) 

N/A 

 

-50% at day 
2 

~4-Fold after 
3-month 
culture 

2022 [8] 

Tobacco BY-
2 cells 

(N. 
tabacum) 

0.770 

 

N/A 
4 to 5-fold 
after 7-day 

culture 
2024 [9] 
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Supplementary Table 2. Printing parameters for various nozzles 

Nozzle 
Nozzle 

diameter (μm) 

Extrusion flux 

(mm3/s) 

Moving speed of 

printer (mm/s) 

Height of Each 

Layer (mm) 

18G 840 

2 

5 

0.80 1.5 

1 

22G 410 

0.75 

0.40 0.5 

0.25 

24G 310 

0.6 

0.30 0.4 

0.2 

27G 210 0.25 0.25 
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